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Micron Scale 3D Imaging with Multi-Camera Array
Supplementary Information

S1. Table of Optical and Hardware Parameters

Parameter Value
Camera Spacing 13.5 mm
Pixel Size 1.1 µm
Sensor Width 4.63 mm
Effective Focal Length 26.23 mm
Image Space F/# 2.6
Working F/# 3.013
Image Space NA 0.164
Object Space NA 0.0357
Entrance Pupil Diameter 9.636 mm
Primary Wavelength 0.5875618 µm

Table S1: Summary of optical and hardware Parameters

S2. Impact of Hardware Design on Height Prediction
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Figure S1: Simplified view of the array showing two cameras looking at an object with height ho. Both cameras are
assumed to be identical.

List of variables:

Focal Length f Magnification M
Working Distance dw Numerical Aperture NA
Image Distance di Lateral Resolution r
Object Height ho Pixel Size µ
Camera Spacing p Sensor Width s

Let us consider a simplified view of the system with two cameras viewing an object with height ho as shown in
Figure S1. We assume both cameras are identical and ignore the effect of camera distortion, lens aberration, and
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misalignment. We also assume that the object lies within the depth-of-field of the system, and ignore occlusions. The
center-to-center distance between the cameras is p. From the lens equation,

1

di
+

1

dw
=

1

f
(S1)

and the magnification of the system is given as:

M =
di
dw

(S2)

Due to parallax, the object’s apparent position is shifted XR and XL in the right and left cameras, respectively.
The accuracy of height estimation via stereo depends on how well the total parallax ∆X = XR +XL can be measured.

Using similar triangles,

ho

∆X
=

dw − ho

p

Using Eqns S1 and S2 we get dw = f(1 + 1
M ). Substituting and rearranging,

ho =
∆Xf(M + 1)

pM +∆XM
(S3)

To obtain the uncertainty in the object height δh, we can set the parallax error ∆X to the object-side lateral
resolution of the system r.

The object-side lateral resolution can be either diffraction-limited or pixel-limited and is respectively given as:

rpixel =
2µ

M
(S4)

rdiff =
λ

M ·NA
≈ λ · 2di

M ·D
=

2λf(M + 1)

M ·D
(S5)

where λ is the wavelength and D is the diameter of the lens aperture.

Substituting these in Eqn S3 we get,

δhpixel =
2µf(M + 1)

M(pM + 2µ)
(S6)

and,

δhdiff =
2λf2(M + 1)2

M(pDM + 2λf(M + 1))
(S7)

So we can see that having a lower f , higher M , and p will improve the height accuracy in both cases. Since at least
50% overlap in the FOVs of adjacent cameras is needed to ensure that at least two cameras are looking at each point
in the scene, increasing the sensor pitch p would mean decreasing the magnification by the same factor. From above we
can see that while increasing the pitch can improve the height accuracy, the corresponding decrease in magnification is
more effective, resulting in decreased height accuracy.

One of our assumptions was that the object lies within the system’s depth-of-field (DOF ). However our choice of f ,
M , and p also affects the DOF . DOF is usually given as:

DOF =
2d2wNc

f2
(S8)

where N is the f-number of the lens, and c is the acceptable circle of confusion. We can replace N = f/D and set
c = 2µ so that the circle of confusion is limited to two pixels.

DOF =
2d2wNc

f2
=

4fµ

D
(1 +

1

M
)2 (S9)

So we can see that decreasing the focal length and increasing the magnification (which improves the height accuracy)
reduces the system DOF . A shallower depth of field will necessitate a denser focal stack.
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Figure S2: Robust sharpness metric. As the illumination changes (a), sharpness calculated without normalization
(b) also changes. Stray reflections (marked in green) also affect the metric calculation. Our method (c) is robust against
both.

S3. Robust Sharpness Metric

Since we wish our sharpness metric to be robust to illumination and magnification changes, we first create a normalized
version of our image by dividing it by its own Gaussian blurred version. The output of this operation is akin to a
normalized high-pass filtered image. We then take the magnitude of the gradients of this image as our sharpness metric.
Let us say that s(x, y, z) denotes a slice from our z-stack. Then,

snorm(x, y, z) =
s(x, y, z)

s(x, y, z)G(x, y)
(S10)

where G(x, y) denotes a 2D gaussian kernel. And we obtain the sharpness metric as:

P (x, y, z) =
∣∣∇x,y snorm(x, y, z)

∣∣G(x, y) (S11)

Gaussian filtering helps obtain a smooth sharpness metric.
This process is demonstrated in Figure S2. Normalizing the images using our method yields a consistent metric

even as the illumination changes, as well as provides robustness against stray reflections.
Finally, we can also obtain a depth-from-focus estimate using this metric as:

dargmax(x, y) = argmax
z

P (x, y, z) (S12)

S4. Geometric and Photometric Calibration

We calibrate the Geometric and Photometric Properties of the camera array before capturing data. Geometric
calibration includes determining each camera’s 6D pose (3D position and 3D orientation) and a radial distortion
parameter shared across all cameras. Photometric calibration addresses intensity variations within each camera caused
by vignetting and pixel response differences, properties include the variation in the pixel intensity within the individual
cameras due to vignetting and variations in pixel response, as well as inter-camera variations. These arise due to
multiple factors, including uneven illumination, differences in pixel response, and stray reflections.

We capture a focal stack of a patterned, flat target to perform the calibration. For each camera, we select the
sharpest plane from the stack by selecting the per-pixel location z that maximizes the mean sharpness given as
Pm = meanx,yP (x, y, z = z). Sharpness is calculated using the metric described above.

Starting with initial estimates of the geometric and photometric properties, we dewarp and backproject the 54
target images onto a shared object plane. These images are then reprojected into camera space. Using gradient descent,
we iteratively minimize pixel-wise photometric error, refining both the geometric and photometric parameters in the
process. Specifically, let the geometric properties for the ith camera be parameterized by θi, and let x0 and y0 be two
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vectors representing the spatial coordinates of the camera pixels. We will use an image deformation operation, Dθ{·, ·},
to map these coordinates into a common coordinate space, specifically the object plane. i.e.

xi, yi = Dθi{x0, y0} (S13)

where xi, yi are the dewarped coordinates of the ith camera on the object plane. Specific implementation of Dθi follows
[1]. Next, let the photometric properties for the i th camera be parametrized by ϕi, and let Ii,0 be a vector of the same
length as x0 and y0, which gives the measured intensity at every pixel coordinate in the i th camera. We can then use
a photometric correction operator Cϕ,x0,y0

{·} to photometrically adjust the intensity values for the i th camera, so that

Ii = Cϕ,x0,y0
{Ii,0} (S14)

where Ii represents the adjusted intensity values. Note that the operation depends on x0 and y0 due to the spatially
varying nature of this photometric correction. Once the deformation and photometric adjustments have been completed
for all 54 cameras, we can initialize a blank matrix R[·, ·] to hold the stitched reconstruction. We will then use
the corrected coordinate vectors, xi and yi, to back-project the corrected intensity values Ii for each camera into
R. When specific coordinates in R are visited more than once, the values are averaged. The end result of this step
is a single-stitched prediction of the full calibration target. Finally, we will again use the estimated geometric and
photometric parameters to reproject R back into camera space, providing estimated images Ipred. We minimize an
error metric given by

L = ∥Ipred − I∥2+
∑
i

stdev(Ii) (S15)

with respect to {θi, ϕi}54i=1 via gradient descent. These steps are then repeated until the loss plateaus (reduces by less
than 0.001 for 5 consecutive iterations).

S5. Network Architecture and Training Details

Downsample Block Upsample Block

2x Bilinear Upsampling

3x3 Conv layer, k filters,
stride=2

3x3 Conv layer, k filters,
stride=1

Batch Norm Batch Norm

Leaky ReLU Leaky ReLU

3x3 Conv layer, k filters,
stride=1

1x1 Conv layer, k filters,
stride=1

Batch Norm Batch Norm

Leaky ReLU Leaky ReLU

Table S2: Network Architecture

Our CNN consists of Downsample and Upsample blocks as summarized in Table S2. In all our experiments, we
used 4 sequential downsample blocks with k = 16, 16, 32, 32 filters, followed by 4 sequential upsample blocks with
k = 32, 32, 16, 16 filters.

Hyperparameter values used for various objects were:

Object α β γ λ
3D-printed Pyramid 10 5000 5 8
Packaging Foam Piece 10 5000 5 8
Terracotta Rooster 10 5000 1 5
Carved Protome 20 5000 10 5

Clay Cup 10 5000 10 5
Whale Tooth Carving 0.5 5000 1 10

S6. Ablation Study

To evaluate the contribution of individual loss components to the overall performance of our reconstruction algorithm,
we conducted an ablation study using the 3D printed pyramid object. Each of the four loss terms i.e. stereo (Lstereo),
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sharpness (Lsharp), focus (Lfocus), and photometric (Lphoto), were systematically removed during the training phase
by setting its corresponding hyperparameter (α, β, γ, or λ) to zero. All other hyperparameters were kept consistent
with those used for the 3D printed pyramid results reported previously (Supplementary Material S5). Each ablated
configuration was trained on the same hardware for 160,000 iterations, using a learning rate of 10−4. The resulting
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in depth estimation are summarized in Table S6.

Configuration MAE (mm) RMSE (mm)
Full Model (All losses) 0.536 0.669
No stereo loss (α = 0) 0.658 0.848
No sharpness loss (β = 0) 0.828 1.063
No focus loss (γ = 0) 0.719 0.956
No photometric loss (λ = 0) 0.718 0.843

Table S3: Quantitative results of the ablation study on the 3D printed pyramid. MAE and RMSE are reported in mm.

These results clearly demonstrate that the full model, incorporating all four loss terms, achieves the lowest error.
The removal of any single loss component resulted in a degradation of performance. Notably, excluding the sharpness
loss (β = 0) led to the most significant increase in error, with MAE rising to 0.828 mm and RMSE to 1.063 mm. This
underscores the critical role of the sharpness cue in refining the depth predictions. The absence of the stereo loss
(where α = 0) also substantially impacted accuracy, yielding an MAE of 0.658 mm and RMSE of 0.848 mm. Removing
the focus loss (γ = 0) or the photometric loss (λ = 0) also resulted in increased errors compared to the full model,
highlighting their respective contributions to the final reconstruction quality.

Figure S3: Section of the RGB stitched image obtained for different ablations

Figure S4: Surface Profile Plots obtained for different ablations

Qualitatively, these findings are supported by the visual results. Figure S3 presents sections of the stitched RGB
images, where the reconstruction from the full model exhibits enhanced clarity and fewer artifacts compared to the
ablated configurations. Furthermore, Figure S4 displays the corresponding surface profile plots, visually confirming
that the depth map generated by the full model aligns more closely with the object’s true geometry.

S7. Resolution via Fourier Ring Correlation

The FRC values obtained for different objects are given below.

Figure S5 shows the FRC plots for all these objects.
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Object Name FRC Resolution
3D-printed Pyramid 34 µm
Foam Piece 27 µm
Terracotta Rooster 36 µm
Carved Protome 27 µm
Clay Cup 37 µm
Whale Tooth Carving 30 µm

Table S4: FRC values obtained for various objects

S8. Supplementary Results

Please look at Figure S6 and Figure S7 for additional reconstructions of the 3D-printed Pyramid and Packaging Foam
Piece. Figure S8 shows all-in-focus and depth reconstruction of a small painting.

Figure S5: Fourier Ring Correlation plots for various objects.
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Figure S6: (a) 3D printed pyramid, (b) All-in-focus composite image and zoom-in, (c) Predicted depth map, (d)
Resolution Characterization with Fourier Ring Correlation, (e) Line profile

Figure S7: (a) Packaging Foam Piece, (b) All-in-focus composite image and zoom-in, (c) Predicted depth map, (d)
Resolution Characterization with Fourier Ring Correlation, (e) Line profile



8

Figure S8: (a) shows the all-in-focus composite image and (b) shows the depth map. Insets (c) and (e) are zoom-ins of
the all-in-focus composites, and insets (d) and (f) are zoom-ins of the depth maps. The thick brush strokes are clearly
visible in both the photometric and depth composites.
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